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Abstract. Let G be a higher rank simple real algebraic group, or more
generally, any semisimple real algebraic group with no rank one factors
and X the associated Riemannian symmetric space. For any Zariski
dense discrete subgroup Γ < G, we prove that Vol(Γ\X) = ∞ if and only
if no positive Laplace eigenfunction belongs to L2(Γ\X), or equivalently,
the bottom of the L2-spectrum is not an atom of the spectral measure
of the negative Laplacian.

1. Introduction

Let M be a complete Riemannain manifold and let ∆ denote the Laplace-
Beltrami operator on M. Define the real number λ0(M) ∈ [0,∞) by

λ0(M) := inf

®∫
M ∥grad f∥2 d vol∫

M |f |2 d vol
: f ∈ C∞

c (M)

´
, (1.1)

where C∞
c (M) denotes the space of all smooth functions with compact sup-

ports. This number λ0(M) is known as the bottom of the L2-spectrum
of the negative Laplacian −∆ and separates the L2-spectrum and the pos-
itive spectrum [24, p. 329] (Fig. 1). More precisely, let L2(M) denote

Figure 1. λ0 separates the L2 and positive spectrum

the space of all square-integrable functions with respect to the inner prod-
uct ⟨f1, f2⟩ =

∫
M f1f2 d vol. Let W 1(M) ⊂ L2(M) denote the closure of

C∞
c (M) with respect to the norm

∥f∥W 1 = (

∫
M
f2 d vol+

∫
M

∥ grad f∥2 d vol)1/2.

There exists a unique self-adjoint operator on the space W 1(M) extending
the Laplacian ∆ on C∞

c (M), which we also denote by ∆ (cf. [12, Chapter
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4.2]). The L2-spectrum of −∆ is the set of all λ ∈ C such that ∆ + λ
does not have a bounded inverse (∆ + λ)−1 : L2(M) → W 1(M). Sullivan
showed that the L2-spectrum of −∆ contains λ0(M) and is contained in the
positive ray [λ0(M),∞), that is, λ0(M) is the bottom of the L2-spectrum,
and moreover, there are no positive eigenfunctions with eigenvalue strictly
bigger than λ0(M) [24, Theorem 2.1 and 2.2] (see Fig. 1). We will call an
eigenfunction with eigenvalue λ0(M) a base eigenfunction. Note that the
absence of a base eigenfunction in L2(M) is same as the absence of a positive
eigenfucntion in L2(M).

In this paper, we are concerned with locally symmetric spaces. Let G
be a connected semisimple real algebraic group and (X, d) the associated
Riemannian symmetric space. Let Γ < G be a discrete torsion-free subgroup
and let M = Γ\X the corresponding locally symmetric manifold.

For a rank one locally symmetric manifold M = Γ\X, the relation be-
tween λ0(M) and the critical exponent1 δΓ is well-known: if we denote by
D = DX the volume entropy of X, then

λ0(M) =

®
D2/4 if δΓ ≤ D/2

δΓ(D − δΓ) otherwise

([7]-[9], [18]-[20], [24], [4]). We refer to ([16], [1], [3]) for extensions of these
results in higher ranks. We remark that when G has Kazhdan’s property (T)
(cf. [28, Theorem 7.4.2]), we have Vol(M) = ∞ if and only if λ0(M) > 0
([4], [16]).

The goal of this article is to study the square-integrability of a base eigen-
function of locally symmetric manifolds. The space of square-integrable base
eigenfunctions is at most one dimensional and generated by a positive func-
tion when non-trivial [24]. Based on this positivity property and using their
theory of conformal measures on the geometric boundary, Patterson and
Sullivan showed that if M is a geometrically finite real hyperbolic (n+ 1)-
manifold, then M has a square-integrable base eigenfunction if and only if
the critical exponent δΓ is strictly greater than n/2 ([21], [25], [24, Theo-
rem 2.21]). More generally, the formula for λ0(M) given above, together
with [13, Corollary 3.2] (cf. also [17]) and [27, Theorem 1.1], imply that
any rank one geometrically finite manifold M has a square-integrable base
eigenfunction if and only if the critical exponent δΓ is strictly greater than
DX/2.

The main theorem of this paper is the following surprising higher rank
phenomenon that contrasts with the rank one situation:

Theorem 1.1. Let G be a connected semisimple real algebraic group with
no rank one factors. For any Zariski dense discrete torsion-free subgroup
Γ < G, we have Vol(Γ\X) = ∞ if and only if Γ\X does not possess any

1the abscissa of convergence of the Poincare series s 7→
∑

γ∈Γ e−sd(o,γo), o ∈ X.
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square-integrable positive Laplace eigenfunction, that is, λ0(Γ\X) > 0 is not
an atom for the spectral measure of −∆.

In other words, when Vol(Γ\X) = ∞, no base eigenfunction is square-
integrable (see also Theorem 4.3 for a more general version). A special case
of this theorem for Anosov subgroups of higher rank semisimple Lie groups
was proved in [10, Theorem 1.8]. See Theorem 4.3 for a more general version.

Our proof of Theorem 1.1 is based on the higher rank version of Patterson-
Sullivan theory introduced by Quint [22], with a main new input being
the recent theorem of Fraczyk and Lee (Theorem 4.1, [11]). Suppose that
Vol(Γ\X) = ∞ and a base eigenfunction is square-integrable. Using Sulli-
van’s work [24], it was then shown by Edwards and Oh [10] that there exists
a Γ-conformal density {νx : x ∈ X} on the Furstenberg boundary of G (see
Definition 2.1) such that any such base eigenfunction is proportional to the
function Eν given by

Eν(x) = |νx| for all x ∈ X. (1.2)

Moreover, the following higher rank version of the smearing theorem of
Thurston and Sullivan ([25], [26]) was also obtained in [10] (see Theorem
3.1):

|mν,ν | ≪
∫
Γ\X

|Eν |2dx,

where mν,ν is a generalized Bowen-Margulis-Sullivan measure on Γ\G cor-
responding to the pair (ν, ν); see Definition 3.3. On the other hand, the
recent theorem of Fraczyk and Lee (Theorem 4.1, [11]) which describes all
discrete subgroups admitting finite BMS measures implies that |mν,ν | = ∞,
and consequently, Eν /∈ L2(Γ\X), yielding a contradiction. We remark that
the integrand on the right hand side of (1.2) can be replaced by an O(1)-
neighborhood of the support of mν,ν and Sullivan used the rank one version
of this to deduce the finiteness of the BMS measure mν,ν attached to the
(unique) Patterson-Sullivan measure ν from the the growth control of the
base eigenfunction for Γ geometrically finite [25].

We close the introduction by presenting two related questions on the L2-
spectrum. When Γ < G is geometrically finite in a rank one Lie group and
there is no positive square-integrable eigenfunction, there are no Laplace
eigenfunctions in L2(Γ\X) and the quasi-regular representation L2(Γ\G) is
tempered2 ([18], [25], [5], [15]). In view of this, we ask the following question:
let G be a semisimple real algebraic group with no rank one factors and
Γ < G be a Zariski dense discrete subgroup.

Question 1.1. (1) When Γ < G is not a lattice, can there exist any
Laplace eigenfunction in L2(Γ\X)?

(2) Is there an example of Γ such that L2(Γ\G) is non-tempered?

2This means that L2(Γ\G) is weakly contained in L2(G), or equivalently, every matrix
coefficient of L2(Γ\G) is L2+ε(G)-integrable for any ε > 0.
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Regarding the question (2), there are many non-Zariski dense discrete
subgroups such that L2(Γ\G) is non-tempered. For example, if H < G is
a connected semisimple subgroup such that L2(H\G) is not tempered (e.g.
G = SL2n(R) and H = Sp2n(R), n ≥ 2, satisfy this and see [2, Section 5] for
more examples of such H and G) and Γ < H is a lattice in H, then L2(Γ\G)
is non-tempered. On the other hand, for Zariski dense Hitchin subgroups
Γ < PSLn(R), L2(Γ\PSLn(R)), n ≥ 3, is tempered [10, Theorem 1.7].

Acknowledgements We would like to thank Peter Sarnak and David
Fisher for their interests and useful comments.

2. Positive eigenfuntions and conformal measures

Let G be a connected semisimple real algebraic group. We fix, once and
for all, a Cartan involution θ of the Lie algebra g of G, and decompose g as
g = k ⊕ p, where k and p are the +1 and −1 eigenspaces of θ, respectively.
We denote by K the maximal compact subgroup of G with Lie algebra
k. We also choose a maximal abelian subalgebra a of p. Fixing a left G-
invariant and right K-invariant Riemannian metric on G induces a Weyl-
group invariant inner product and corresponding norm on a, which we denote
by ⟨·, ·⟩ and ∥ · ∥ respectively. Note also that the choice of this Riemannian
metric induces a G-invariant metric d(·, ·) on G/K. We denote by X = G/K
the corresponding Riemannian symmetric space. The Riemannian volume
form on X is denoted by d vol . We also use dx to denote this volume form,
as well as for the Haar measure on G.

Let A := exp a. Choosing a closed positive Weyl chamber a+ of a, let
A+ = exp a+. The centralizer of A in K is denoted by M , and we set N to
be the maximal horospherical subgroup for A so that log(N) is the sum of
all positive root subspaces for our choice of a+. We set P = MAN , which
is a minimal parabolic subgroup of G. The quotient

F = G/P

is known as the Furstenberg boundary of G, and since K acts transitively
on F and K ∩ P =M , we may identify F with K/M .

Let Σ+ denote the set of all positive roots for (g, a+). We also write
Π ⊂ Σ+ for the set of all simple roots. For any g ∈ G, there exists a unique
element µ(g) ∈ a+ such that g ∈ K expµ(g)K. The map µ : G → a+ is
called the Cartan projection. Setting o = [K] ∈ X, we then have ∥µ(g)∥ =
d(go, o) for all g ∈ G. Throughout the paper we will identify functions on
X with right K-invariant functions on G. For each g ∈ G, we define the
following visual maps:

g+ := gP ∈ F and g− := gw0P ∈ F , (2.1)

where w0 denotes the Weyl group element such that Adw0 a
+ = −a+. The

unique open G-orbit F (2) in F ×F under the diagonal G-action is given by
F (2) = G(e+, e−) = {(g+, g−) ∈ F × F : g ∈ G}. Let G = KAN be the
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Iwasawa decomposition, and define the Iwasawa cocycle H : G → a by the
relation:

g ∈ K exp
(
H(g)

)
N.

The a-valued Busemann map is defined using the Iwasawa cocycle as
follows: for all g ∈ G and [k] ∈ F with k ∈ K, define

β[k](g(o), h(o)) := H(g−1k)−H(h−1k) ∈ a for all g, h ∈ G.

Conformal measures. We denote by a∗ the space of all real-valued linear
forms on a. In the rest of this section, let Γ < G be a discrete subgroup.
The following notion of conformal densities was introduced by Quint [22,
Section 1.2], generalizing Patterson-Sullivan densities for rank one groups
([21, Section 3], [23, Section 1]).

Definition 2.1. Let ψ ∈ a∗.

(1) A finite Borel measure ν on F = K/M is said to be a (Γ, ψ)-
conformal measure (for the basepoint o) if for all γ ∈ Γ and ξ =
[k] ∈ K/M ,

dγ∗ν

dν
(ξ) = e−ψ(βξ(γo,o)),

where γ∗ν(Q) = ν(γ−1Q) for any Borel subset Q ⊂ F .
(2) A collection {νx : x ∈ X} of finite Borel measures on F is called a

(Γ, ψ)-conformal density if, for all x, y ∈ X, ξ ∈ F and γ ∈ Γ,

dνx
dνy

(ξ) = e−ψ(βξ(x,y)) and dγ∗νx = dνγ(x). (2.2)

A (Γ, ψ)-conformal measure ν defines a (Γ, ψ)-conformal density {νx : x ∈
X} by the formula:

dνx(ξ) = e−ψ(βξ(x,o))dν(ξ),

and conversely any (Γ, ψ)-conformal density {νx} is uniquely determined
by its member νo by (2.2). By a Γ-conformal measure on F , we mean a
(Γ, ψ)-conformal measure for some ψ ∈ a∗.

Definition 2.2. Let ψ ∈ a∗. Associated to a (Γ, ψ)-conformal measure ν
on F , we define the following function Eν on G: for g ∈ G,

Eν(g) := |νg(o)| =
∫
F
e−ψ

(
H(g−1k)

)
dν([k]). (2.3)

Since |νγ(x)| = |νx| for all γ ∈ Γ and x ∈ X, the left Γ-invariance and right
K-invariance of Eν are clear. Hence we may consider Eν as a K-invariant
function on Γ\G, or, equivalently, as a function on Γ\X.

Let D = D(X) denote the ring of all G-invariant differential operators
on X. For each (Γ, ψ)-conformal measure ν, Eν is a joint eigenfunction of
D and conversely, any positive joint eigenfunction on Γ\X arises as Eν for
some (Γ, ψ)-conformal measure ν [10, Proposition 3.3].
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Let ∆ denote the Laplace-Beltrami operator on X or on Γ\X. Since ∆ is
an elliptic differential operator, an eigenfunction is always smooth. We say
a smooth function f is λ-harmonic if

−∆f = λf.

Define the real number λ0 = λ0(Γ\X) ∈ [0,∞) as follows:

λ0 := inf

{∫
Γ\X ∥grad f∥2 d vol∫

Γ\X |f |2 d vol
: f ∈ C∞

c (Γ\X), f ̸= 0

}
. (2.4)

We call a λ0-harmonic function on Γ\X a base eigenfunction. In general,
a λ-harmonic function need not be a joint eigenfunction for the ring D(X).
However, a square-integrable λ0-harmonic function turns out to be a positive
joint eigenfunction, up to a constant multiple. The following is obtained in
[10, Corollary 6.6, Theorem 6.5] using Sullivan’s work [24] and [14].

Theorem 2.3. [10] If a base eigenfunction ϕ0 belongs to L2(Γ\X), then
there exists ψ ∈ a∗ and a (Γ, ψ)-conformal measure ν on F such that ϕ0 is
proportional to Eν .

Here the space L2(Γ\X) consists of square-integrable functions with re-
spect to the inner product ⟨f1, f2⟩ =

∫
Γ\X f1f2 d vol.

3. Higher rank smearing theorem

Let G be a connected semisimple real algebraic group and Γ < G be a
discrete subgroup. We recall the definition of a generalized Bowen-Margulis-
Sullivan measure, as was defined in [6, Section 3].

Fix a pair of linear forms ψ1, ψ2 ∈ a∗. Let ν1 and ν2 be respectively (Γ, ψ1)
and (Γ, ψ2) conformal measures on F . Using the homeomorphism (called

the Hopf parametrization) G/M → F (2) × a given by gM 7→ (g+, g−, b =
βg−(e, g)), define the following locally finite Borel measure m̃ν1,ν2 on G/M

as follows: for g = (g+, g−, b) ∈ F (2) × a,

dm̃ν1,ν2(g) = eψ1(βg+ (o,go))+ψ2(βg− (o,go)) dν1(g
+)dν2(g

−)db, (3.1)

where db = dℓ(b) is the Lebesgue measure on a. The measure m̃ν1,ν2 is left
Γ-invariant and right A-semi-invariant: for all a ∈ A,

a∗m̃ν1,ν2 = e(−ψ1+ψ2◦i)(log a) m̃ν1,ν2 , (3.2)

where i denotes the opposition involution3 i : a → a (cf. [6, Lemma 3.6]).
The measure m̃ν1,ν2 gives rise to a left Γ-invariant and right M -invariant
measure on G by integrating along the fibers of G → G/M with respect
to the Haar measure on M . By abuse of notation, we will also denote this
measure by m̃ν1,ν2 . We denote by

mν1,ν2 (3.3)

3It is defined by i(u) = −Adw0(u) where w0 is a Weyl group element with Adw0 a
+ =

−a+.
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the measure on Γ\G induced by m̃ν1,ν2 , and call it the generalized BMS-
measure associated to the pair (ν1, ν2).

The following theorem was proved in [10], extending the smearing argu-
ment due to Sullivan and Thurston ([25, Proposition 5], [5, Proof of Theorem
4.1]) to the higher rank setting.

Theorem 3.1 (Smearing theorem). [10, Theorem 7.5] For any pair (ν1, ν2)
of Γ-conformal measures on F , there exists c > 0 such that

|mν1,ν2 | ≤ c

∫
1-neighborhood of suppmν1,ν2

Eν1(x)Eν2(x) d vol(x).

An immediate corollary is as follows:

Corollary 3.2. Let ν be a Γ-conformal measure on F . If |mν,ν | = ∞, then

Eν /∈ L2(Γ\X).

4. Proof of Main theorem

As in Theorem 1.1, let G be a connected semisimple real algebraic group
with no rank one factors and Γ < G be a Zariski dense discrete torsion-free
subgroup. We recall the following recent theorem:

Theorem 4.1 (Fraczyk-Lee, [11]). Suppose that Vol(Γ\X) = ∞. Then for
any pair (ν1, ν2) of (Γ, ψ) and (Γ, ψ◦ i)-conformal measures for some ψ ∈ a∗,

mν1,ν2(Γ\G) = ∞.

Corollary 4.2. If Vol(Γ\X) = ∞, then for any pair (ν1, ν2) of Γ-conformal
measures, mν1,ν2(Γ\G) = ∞.

Proof. For k = 1, 2, let νk be a (Γ, ψk)-conformal measure with ψk ∈ a∗.

Suppose |mν1,ν2 | < ∞. Since a∗mν1,ν2 = eψ1(log a)−ψ2(i log a)mν1,ν2 for all
a ∈ A by (3.2), it follows that

|mν1,ν2 | = eψ1(log a)−ψ2(i log a)|mν1,ν2 |.
Since |mν1,ν2 | <∞, we must have

ψ2 = ψ1 ◦ i.
Therefore the claim follows from Theorem 4.1. □

Proof of Theorem 1.1 Suppose that Vol(Γ\X) = ∞ and ϕ0 is a base
eigenfunction in L2(Γ\X). By Proposition 2.3, we may assume that ϕ0 = Eν
for some Γ-conformal measure ν on F . Now by Theorem 3.1 and Corollary
4.2,

∞ = |mν,ν | ≪ ∥Eν∥22.
This is a contradiction.

Indeed, using a more precise version of the main theorem of [11] in re-
placement of Theorem 4.1, we obtain the following without the hypothesis
on no rank one factors.
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Theorem 4.3. Let G be a connected semisimple real algebraic group and
Γ < G be a Zariski dense discrete subgroup. If Γ\X admits a square-
integrable base eigenfunction, then G = G1G2, Γ is commensurable with
Γ1Γ2 where G1 (resp. G2) is a product of rank one (resp. higher rank)
factors of G, Γ1 < G1 is a discrete subgroup and Γ2 < G2 is a lattice.
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